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ABSTRACT

A Takasaki quandle (T (G), ∗) is a quandle under the binary operation ∗ defined by
a∗b = 2b−a for an abelian group (G, +). In this paper, we will show that if a subquandle
X of a Takasaki quandle G is a image of subgroup of G under a quandle automorphism
of T (G), then the set {X ∗ g | g ∈ G} is a quandle under the binary operation ∗′ defined
by (X ∗ g) ∗′ (X ∗ h) = X ∗ (g ∗ h). On the other hand, the quotient structure studied in
[On quotients of quandles, J. Knot Theory Ramifications 19(9) (2010) 1145–1156] can
be applied to the Takasaki quandles. In this paper, we will review the quotient structure
studied in [On quotients of quandles, J. Knot Theory Ramifications 19(9) (2010) 1145–
1156], and show that the quotient quandle coincides with the quotient quandle defined
by Bunch, Lofgren, Rapp and Yetter in [On quotients of quandles, J. Knot Theory
Ramifications 19(9) (2010) 1145–1156] for connected Takasaki quandles.
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1. Introduction

In 1942, Takasaki [11] introduced the notion of kei. In 1980s, Joyce [4] and
Matveev [5] introduced the definition of quandles independently. A quandle is an
algebraic object with a binary operation satisfying three axioms derived from Rei-
demeister moves. In Joyce’s terminology, a kei is an involutory quandle. A Takasaki
quandle is one of examples of keis defined by abelian groups. In [4, 5], it was shown
that classical knots can be almost completely classified by the fundamental quan-
dles of knots. But the direct computation of the fundamental quandles of knots
is very complicated. Many mathematicians study algebraic structures for quan-
dles. Ferman, Nowik and Teicher [3] and Nelson [6] studied algebraic structures of
Alexander quandles, while Nelson and Wong [7] and Roszkowska-Lech [9] studied
about a decomposition of quandles, derived from the inner quandle automorphisms.
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In [10], Roszkowska-Lech classified subdirectly irreducible abelian quandles by using
the decomposition. In [2], Bunch, Lofgren, Rapp and Yetter defined a quotient struc-
ture of quandles in terms of the inner quandle automorphism groups of quandles
and studied its properties. In [8], Roszkowska-Lech proved that for an abelian group
G of odd order, there is a congruence relation on T (G) if and only if there is a con-
gruence relation on G. In [1], the authors studied a quotient structure of Takasaki
quandles in terms of subquandles.

In this paper, we will show that if X is a subquandle of a Takasaki quandle
T (G) which is the image of a subgroup of G under any quandle automorphism of
T (G), then the set {X ∗ g | g ∈ G} is a quandle, called the quotient quandle, under
the binary operation

(X ∗ g) ∗′ (X ∗ h) = X ∗ (g ∗ h).

Furthermore we will show that the above quandle coincides with the quotient quan-
dle defined by Bunch, Lofgren, Rapp and Yetter for connected Takasaki quandles.

2. Basic Definitions and Properties

A quandle is a set Q equipped with a binary operation ∗ : Q × Q → Q satisfying
the following three axioms:

(1) For all x ∈ Q, x ∗ x = x.

(2) For all x, y ∈ Q, ∃! z ∈ Q such that z ∗ x = y (denote z = y ∗̄ x).
(3) For all x, y, z ∈ Q, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

A set X with a binary operation ∗ defined by a ∗ b = a is a quandle, which
is called the trivial quandle. An abelian group (G,+) with a binary operation ∗
defined by a ∗ b = 2b − a is a quandle, which is called the Takasaki quandle of an
abelian group (G,+), which would be denoted by (T (G), ∗). For a module M over
the Laurent polynomial ring Z[t±1], (M, ∗) with the binary operation ∗ defined by
a ∗ b = ta+ (1 − t)b is a quandle, which is called an Alexander quandle.

By the second axiom of a quandle, ∗̄ : Q × Q → Q is also a binary operation.
The second axiom of a quandle is equivalent with that two binary operations ∗ and
∗̄ satisfy the following property; for all x, y ∈ Q,

(x ∗ y) ∗̄ y = x = (x ∗̄ y) ∗ y.
A function f from a quandle (Q, ∗) to an another quandle (R, ∗′) is a quandle
homomorphism if f(x ∗ y) =f(x) ∗′ f(y). A quandle homomorphism is called a
quandle isomorphism if it is bijective. A quandle isomorphism from Q to itself is
called a quandle automorphism. By the second axiom and the third axiom of a
quandle, it is clear that a mapping ∗x : Q → Q defined by ∗x(y) = y ∗ x is a
quandle automorphism. Indeed,

(∗x)−1 = ∗̄x.
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Let Inn(Q) be the subgroup of the group of all quandle automorphisms which
is generated by {− ∗ q,− ∗̄ q | q ∈ Q}. We call Inn(Q) the inner quandle automor-
phism group of Q. It is clear that if two abelian groups (G,+) and (H,+) are
isomorphic as a group, then two Takasaki quandles (T (G), ∗) and (T (H), ∗) are
isomorphic as a quandle, since the quandle operation ∗ of a Takasaki quandle is
derived from the group operation. Generally, a quandle isomorphism is not a group
isomorphism. For example, for a ∈ G, the function f : T (G) → T (G) defined by
f(x) = x+a is a quandle automorphism of T (G) but it is not a group automorphism
of G.

A quandle (Q, ∗) is called a connected quandle if the action of Inn(Q) on X

is transitive, in other words, for any q, r ∈ Q, there exists σ ∈ Inn(Q) such that
qσ = σ(q) = r. Notice that for σ ∈ Inn(Q), there exist r1, r2, . . . , rn in Q such
that

qσ = σ(q) = (· · · ((q ∗1 r1) ∗2 r2) · · ·) ∗n rn

for all q ∈ Q, ∗i ∈ {∗, ∗̄} for all i ∈ {1, 2, . . . , n}. From this observation, one
can see that if a quandle is obtained from an already known algebraic struc-
ture, then qσ can be represented by the operation of the algebraic structure,
since the quandle operation is applied finitely many times. The connectedness of a
Takasaki quandle depends, especially, on the characteristic of the underlying abelian
group.

Lemma 2.1. A Takasaki quandle (T (G), ∗) is connected if and only if 2G = G.

Proof. Since (x ∗ y) ∗ y = 2y− (2y− x) = x = (x ∗ y) ∗̄ y for all x, y ∈ G, ∗x = ∗x
for every x ∈ G. Hence (T (G), ∗) is connected if and only if for all q, r ∈ G, there
exist r1, r2, . . . , rn in G such that r = (· · · ((q ∗ r1) ∗ r2) · · ·) ∗ rn. Notice that

(· · · ((q ∗ r1) ∗ r2) · · ·) ∗ rn = (−1)nq + 2

(
n∑

i=1

(−1)n−iri

)

and
∑n

i=1(−1)n−iri ∈ G.
Suppose (T (G), ∗) is connected. Then for all r ∈ G, there exist r1, r2, . . . , rn in

G such that r = (−1)n0 + 2(
∑n

i=1(−1)n−iri) = 2(
∑n

i=1(−1)n−iri) ∈ 2G. Hence
G ⊂ 2G. Since 2G ⊂ G, 2G = G. Conversely, if 2G = G, then for q, r ∈ G, there
exists s ∈ G such that q+ r = 2s, that is, r = 2s− q = q ∗ s. Therefore (T (G), ∗) is
connected.

A quandle is said to be abelian if (x∗y)∗ (z ∗w) = (x∗z)∗ (y∗w) for x, y, z, w ∈
T (G). By the definition of an Alexander quandle, we can see the following
lemma.

Lemma 2.2. Every Alexander quandle is abelian. In particular, a Takasaki quan-
dle is abelian.
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Proof. For elements x, y, z, w ∈M ,

(x ∗ y) ∗ (z ∗ w) = t(tx− (1 − t)y) + (1 − t)(tz + (1 − t)w)

= t2x− t(1 − t)y + t(1 − t)z + (1 − t)2

= t(tx− (1 − t)z) + (1 − t)(ty + (1 − t)w)

= (x ∗ z) ∗ (y ∗ w).

Therefore, (M, ∗) is an abelian quandle. In the case of t = −1, (M, ∗) is a Takasaki
quandle and hence Takasaki quandles are also abelian.

A subset X of (Q, ∗) is called a subquandle of Q if X itself is a quandle under ∗.
Indeed, every subset X ⊂ Q which is closed under ∗ and ∗̄ is a subquandle because
every subset of Q satisfies the first and the third axioms of a quandle. Thus we have
Proposition 2.3.

Proposition 2.3. Let (Q, ∗) be a quandle. A subset X of Q is a subquandle of Q
if and only if X is closed under ∗ and ∗.
Corollary 2.4. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+).
A subset X is a subquandle of T (G) if and only if it is closed under ∗.

Proof. As mentioned in the proof of Lemma 2.1, ∗̄x = ∗x for every x ∈ X and
hence the statement is followed from Proposition 2.2.

Let f : T (G) → T (G) is a quandle automorphism. If X ⊂ T (G) is a subquandle
of T (G), then one can easily see that f(X) is also a subquandle of T (G).

Corollary 2.5. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+).
If X is a subgroup of G, then X is a subquandle of (T (G), ∗).

Proof. Let X be a subgroup of G. Let x, y ∈ X . Since X is a subgroup of G,
x ∗ y = 2y − x ∈ X . By Corollary 2.4, X is a subquandle of (T (G), ∗).

Corollary 2.6. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+).
If X is a subgroup of G, then X + g is a subquandle of (T (G), ∗) for all g ∈ G.

Proof. Since f : T (G) → T (G) defined by f(x) = x+ g is quandle automorphism
for g ∈ G, X + g is also a subquandle.

3. Quotient Quandle Defined from Subquandles

In [1], the authors studied about necessary and sufficient condition for subquandles
containing 0 to define a quotient quandle of connected Takasaki quandles. In this
section we will study for subquandles which may not contain 0. Firstly we review
the following two lemmas.

1460012-4

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
01

4.
23

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
Y

U
N

G
PO

O
K

 N
A

T
IO

N
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

August 22, 2014 13:33 WSPC/S0218-2165 134-JKTR 1460012

On quotient structure of Takasaki quandles II

Lemma 3.1 ([1]). Let (T (G), ∗) be the Takasaki quandle of an abelian group
(G,+). Then every subquandle X containing the identity 0 is an ideal of G as
a Z-module. Indeed, kx ∈ X for x ∈ X and k ∈ Z.

Lemma 3.2 ([1]). Let (T (G), ∗) be the Takasaki quandle of an abelian group
(G,+). Let X be a subquandle of (T (G), ∗) containing 0. If X is a subgroup of
(G,+), then, for a, b ∈ G,

(X ∗ a) ∩ (X ∗ b) = ∅ or X ∗ a = X ∗ b.
Moreover, if (T (G), ∗) is a connected quandle, then the converse is also true.

Lemma 3.2 can be improved for subquandles not containing 0 as follows.

Lemma 3.3. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+)
and Y a subquandle of T (G). If there is a quandle automorphism f of T (G) and a
subgroup X of G such that Y = f(X), then, for a, b ∈ G, either

(Y ∗ a) ∩ (Y ∗ b) = ∅ or Y ∗ a = Y ∗ b.
Moreover, if (T (G), ∗) is a connected quandle, then the converse is also true.

Proof. Assume that (Y ∗ a) ∩ (Y ∗ b) �= ∅. Since f is a quandle automorphism of
T (G),

X ∗ f−1(a) ∩X ∗ f−1(b) = f−1(Y ) ∗ f−1(a) ∩ f−1(Y ) ∗ f−1(b)

= f−1((Y ∗ a) ∩ (Y ∗ b))
�= ∅.

Since X is a subgroup of G, by Lemma 3.2, X ∗ f−1(a) = X ∗ f−1(b). Therefore
Y ∗ a = f(X ∗ f−1(a)) = f(X ∗ f−1(b)) = Y ∗ b.

Conversely, assume that (Y ∗ a) ∩ (Y ∗ b) = ∅ or Y ∗ a=Y ∗ b for a, b ∈ G.
We will construct a subgroup X of G and a quandle homomorphism f of T (G)
such that Y = f(X). Let g ∈ Y be fixed. By Corollary 2.6, X = Y − g is also
a subquandle containing 0. Let f : T (G) → T (G) be a quandle automorphism
defined by f(x) = x+ g. Since f is a quandle automorphism and X = f−1(Y ), the
assumption implies that (X ∗ a)∩ (X ∗ b) = ∅ or X ∗ a = X ∗ b for a, b ∈ G. Since X
contains 0 and T (G) is connected, by Lemma 3.2, X is a subgroup of G and hence
Y = f(X) for some subgroup X of G.

Remark 3.4. In the previous lemma, the set {X ∗ a}a∈G is not a partition of G,
in general. For example, consider G = Z8. Then X = {0, 2, 4, 6} is a subgroup of
G, but X ∗ x = X for all x ∈ Z8. That is,

⋃
a∈G(X ∗ a) = X �= G.

The following lemma says that {X ∗ a}a∈G gives a partition for a connected
Takasaki quandle T (G).

Lemma 3.5. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+) and
X a subquandle of T (G). If (T (G), ∗) is a connected quandle, then G =

⋃
a∈G(X∗a).
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Proof. Let X be a subquandle of a connected Takasaki quandle (T (G), ∗). Fix an
element g ∈ X . It is trivial that

⋃
a∈G(X ∗ a) ⊂ G. Let x be an element in G. Since

(T (G), ∗) is connected, by Lemma 2.1, 2G = G. Since x+ g ∈ G, there exists h in
G such that 2h = x+ g, i.e. g ∗ h = 2h− g = x. Since g ∈ X , x = g ∗ h ∈ X ∗ h, i.e.
g ∈ G =

⋃
a∈G(X ∗ a).

Corollary 3.6. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+)
and Y a subquandle of T (G). Assume that T (G) is a connected quandle. Then
{Y ∗ a}a∈G gives a partition of G if and only if Y = f(X) for some subgroup X of
G and a quandle automorphism f of T (G).

Even though {Y ∗ a}a∈G is not a partition for G in general, {Y ∗ a}a∈G is the
set of mutually disjoint subsets as seen in Lemma 3.3. The following theorem says
that one can give a natural quandle structure on {Y ∗ a}a∈G.

Theorem 3.7. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+)
and X a subgroup of G. Let f : T (G) → T (G) be a quandle automorphism and
Y = f(X). Define a binary operation ∗′ on {Y ∗ a}a∈G by

(Y ∗ a) ∗′ (Y ∗ b) = Y ∗ (a ∗ b).
Then ({Y ∗ a}a∈G, ∗′) is a quandle. In fact, ({Y ∗ a}a∈G, ∗′) is isomorphic to
T (2(G/X)) as a quandle. Denote {Y ∗ a}a∈G by T (G)/Y .

Proof. Let X be a subgroup of G and Y = f(X) for a quandle automorphism f of
T (G). Firstly we will show that the operation ∗′ is well-defined. Let Y ∗ a1, Y ∗ a2,
Y ∗ b1 and Y ∗ b2 be elements of {Y ∗ a}a∈G. Assume that Y ∗ a1 = Y ∗ a2 and
Y ∗ b1 = Y ∗ b2. It suffices to show that Y ∗ (a1 ∗ b1) = Y ∗ (a2 ∗ b2). Since T (G) is
an abelian quandle and Y = Y ∗ Y , we can see that

Y ∗ (a1 ∗ b1) = (Y ∗ a1) ∗ (Y ∗ b1) and Y ∗ (a2 ∗ b2) = (Y ∗ a2) ∗ (Y ∗ b2).
By the assumption, (Y ∗ a1) ∗ (Y ∗ b1) = (Y ∗ a2) ∗ (Y ∗ b2) and hence Y ∗ (a1 ∗ b1) =
Y ∗ (a2 ∗ b2).

Now we will show that ∗′ satisfies the three axioms of a quandle. It is trivial that
∗′ satisfies the first axiom and the third axiom of a quandle. For the second axiom
of a quandle, let Y ∗a and Y ∗b be arbitrary in {Y ∗a}a∈G. Since T (G) is a quandle,
there exists c ∈ G such that c∗a = b. It is clear that (Y ∗c)∗′ (Y ∗a) = Y ∗b. For the
uniqueness of Y ∗c, suppose that (Y ∗d)∗′(Y ∗a) = Y ∗b. Since Y ∗(c∗a) = Y ∗(d∗a),
X ∗ (f−1(c) ∗ f−1(a)) = X ∗ (f−1(d) ∗ f−1(a)). There exists x ∈ X such that
0 ∗ (f−1(c) ∗ f−1(a)) = x ∗ (f−1(d) ∗ f−1(a)), or equivalently,

4f−1(a) − 2f−1(c) = 2(2f−1(a) − f−1(c))

= 2(2f−1(a) − f−1(d)) − x

= 4f−1(a) − 2f−1(d) − x
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so that

0 ∗ f−1(d) = 2f−1(d) = 2f−1(c) − x = x ∗ f−1(c).

Since f(0) ∗ d = f(x) ∗ c ∈ Y ∗ c, by Lemma 3.3, (Y ∗ c) = (Y ∗ d). Therefore
({Y ∗ a}a∈G, ∗′) is a quandle.

Notice that Y ∗ a = 2a− Y = 2a− f(X) = f(2f−1(a) −X). Define a function
φ : T (G)/Y → T (2(G/X)) by φ(Y ∗ a) = φ(f(2f−1(a) −X)) = 2f−1(a) +X . It is
easy to show that φ is a well-defined bijective function. Moreover,

φ((Y ∗ a) ∗′ (Y ∗ b)) = φ(Y ∗ (a ∗ b))
= 2f−1(a ∗ b) +X

= 2(2f−1(b)) − 2f−1(a) +X

= (2f−1(a) +X) ∗ (2f−1(b) +X)

= φ(Y ∗ a) ∗ φ(Y ∗ b).
Hence T (G)/Y is isomorphic to T (2(G/X)).

Corollary 3.8. Let (T (G), ∗) be the Takasaki quandle of an abelian group (G,+)
and X a subgroup of G. Let f : T (G) → T (G) be a quandle automorphism and
Y = f(X). If T (G) is connected, then (T (G)/Y, ∗′) is isomorphic to T (G/X) as a
quandle.

Proof. Assume that T (G) is connected. By Lemma 2.1, 2G = G. That is, G/X =
2G/X. Therefore, by Theorem 3.7, T (G)/Y is isomorphic to T (G/X).

Example 3.9. Consider the Takasaki quandle (T (R), ∗) of the abelian group
(R,+). Since Z is a subgroup R, (T (R/Z), ∗′) is a quandle. Since 2R = R and
(R,+) is a connected quandle, by Corollary 3.8, T (R)/Z is isomorphic to T (R/Z) ∼=
T (S1).

Remark 3.10. For an Alexander quandle (M, ∗), we can show that if S ⊂ M is
a submodule and f : M → M is a quandle automorphism, then {f(S) ∗ a}a∈M

is a set of disjoint subsets of M . Moreover, {f(S) ∗ a}a∈M is a quandle under the
binary operation ∗′ defined by (f(S) ∗ a) ∗′ (f(S) ∗ b) = f(S) ∗ (a ∗ b). But we do
not know that “submodule” is the necessary and sufficient condition to define a
quotient quandle of Alexander quandles.

4. Relationship Between the Quotient Quandle from a Subquandle
and the BLRY Quotient Quandle

In [2], Bunch, Lofgren, Rapp and Yetter introduced a quotient structure for quan-
dles defined by the group of inner quandle automorphisms. It can be applied for
every quandle to get a quotient quandle. In Sec. 3, we studied quotient quandle of
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Takasaki quandles defined by subquandles. In this section we will review the con-
struction of the quotient quandle in [2] and will compare two quotient structures
of Takasaki quandles.

Consider the right action on a quandle (Q, ∗, ∗̄) by Inn(Q) defined by qσ = σ(q)
for σ ∈ Inn(Q) and for q ∈ Q. If Q is connected, then there is the only one orbit. If
N is a subgroup of Inn(Q), then there is another right action on Q by N defined by
qσ = σ(q) for σ ∈ N and for q ∈ Q. Define an equivalence relation ∼N by q ∼N r

if and only if q and r are on the same orbit of the right action by N , that is,

q ∼N r ⇔ qσ = r for some σ ∈ N.

It is easy to show that this relation is a well-defined equivalence relation. Further-
more, we have the following proposition.

Proposition 4.1 ([2]). Let (Q, ∗, ∗̄) be a quandle. Let N be a subgroup of Inn(Q).
Then ∼N is a congruence relation if and only if N is normal in Inn(Q).

Since ∼N is a congruence relation, {qN}q∈Q is a quandle with the binary oper-
ation ∗′ defined by

(qN) ∗′ (rN) = (q ∗ r)N.
We denote {qN}q∈Q by Q/N and call it BLRY quotient quandle of Q by N .

Proposition 4.2 ([2]). Let (Q, ∗Q, ∗̄Q) and (R, ∗R, ∗̄R) be two quandles. Let
h : Q → R be a surjective quandle homomorphism. Let N = ker(InnQ(h)) and
gN the canonical quandle homomorphism from Q to Q/∼N . Then there exists a
quandle homomorphism f : Q/∼N →R such that h= f ◦gN and InnQ(f) is a group
isomorphism.

To study the quotient structure defined by inner quandle automorphisms, we
need to know the properties of inner quandle automorphisms and the properties of
normal subgroups of Inn(Q).

Lemma 4.3. Let (Q, ∗, ∗̄) be a quandle. For σ ∈ Inn(Q) and q ∈ Q,

σ ◦ (∗q) ◦ σ−1 = ∗qσ.

Proof. For σ ∈ Inn(Q) and q ∈ Q, σ ◦ (∗q) ◦ σ−1(r) = σ ◦ (∗q) ◦ (σ−1(r)) =
σ(σ−1(r)∗ q) = r ∗σ(q) = r ∗ qσ = ∗qσ(r) for all r ∈ Q. Hence, σ ◦ (∗q)◦σ−1 = ∗qσ.

Lemma 4.4. Let (Q, ∗, ∗̄) be a quandle. Let N be a normal subgroup of Inn(Q).
Then qN is a subquandle of Q for q ∈ Q.

Proof. To show that qN is a subquandle of Q for q ∈ Q, it suffices to show
that qσ ∗ qτ ∈ qN and qσ ∗̄ qτ ∈ qN for σ and τ in N . For σ and τ in N ,
qσ ∗ qτ = ((((q ∗̄ q)σ)τ) ∗ q)τ−1 by Lemma 4.3. Since N is a normal subgroup in
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Inn(Q),((((− ∗̄ q)σ)τ) ∗ q) ∈ N and hence ((((− ∗̄ q)σ)τ) ∗ q)τ−1 ∈ N . Therefore
qσ ∗ qτ ∈ qN . Similarly, qσ ∗̄ qτ ∈ qN .

Lemma 4.5. Let (Q, ∗, ∗̄) be a connected quandle. Let N be a proper normal sub-
group of Inn(Q). Then neither ∗q nor ∗̄q is in N for all q ∈ Q.

Proof. Suppose that ∗q ∈ N for some q ∈ Q. Since N is a normal subgroup
of Inn(Q), σ−1 ◦ (∗q) ◦ σ ∈ N , for any σ ∈ Inn(Q). Since Q is connected and
σ−1 ◦ (∗q) ◦ σ = ∗qσ, for any r ∈ Q, r = σ(q) for some σ ∈ Inn(Q). Therefore
∗r ∈ N for any r ∈ Q. Since N is a subgroup, ∗̄q ∈ N for all q ∈ Q. Hence
N = Inn(Q). This is a contradiction. By similar argument, one can see ∗̄q /∈ N .

In Sec. 3, we studied our quotient quandle T (G)/Y defined with subquandles
and showed that necessary and sufficient condition for subquandles to define a
partition in a connected quandle. From now on, we will compare the BLRY quo-
tient quandle T (G)/N and our quotient quandle T (G)/X for a connected Takasaki
quandle.

To compare those two quotient structures T (G)/X and T (G)/N of Takasaki
quandles, we need to figure out the form of InnQ(T (G)). Since Takasaki quandles
are derived from the group structure, the following lemma can be shown.

Lemma 4.6. Let (T (G), ∗) be a Takasaki quandle. Then InnQ(T (G)) = {ψ2g,

φ2g | g ∈ G}, where ψg(x) = −x+ g and φg(x) = x+ g.

Proof. As mentioned in Lemma 2.1, for σ ∈ InnQ(T (G)), σ(x) = (· · · ((x ∗
r1) ∗ r2) · · ·) ∗ rn = (−1)nx + 2(

∑n
i=1(−1)n−iri) for some r1, r2, . . . , rn in Q. Put

g =
∑n

i=1(−1)n−iri. Then

σ(x) =

{
x+ 2g, if n is even,
−x+ 2g, if n is odd.

Therefore every σ ∈ InnQ(T (G)) has the form of ψ2g or φ2g for some g ∈ G.

For a connected quandle Q, if N = Inn(Q), then Q/N has the only one element.
Therefore we will consider a proper normal subgroup N of InnQ(T (G)).

Corollary 4.7. Let (T (G), ∗) be a connected Takasaki quandle. Let N be a proper
normal subgroup of InnQ(T (G)). Then N = {φ2g | g ∈ H} for some subgroup H

of G. Moreover, 0N is a subgroup of G.

Proof. Since ψ2g(x) = −x+ 2g = x ∗ g, by Lemma 4.5, ψ2g /∈ N for every g ∈ G.
Let H = {g ∈ G |φ2g ∈ N}. Then N = {φ2g | g ∈ H}. We will show that H is a
subgroup ofG. Let g, h ∈ H . By the definition ofH , φ2g and φ2h are inN . SinceN is
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a subgroup of Inn(Q), φ2g ◦φ−1
2h ∈ N . Since φ2g ◦φ−1

2h (x) = x+2(g−h) = φ2(g−h)(x),
by the definition of H , g − h ∈ H . Hence H is a subgroup. Clearly, 0N = 2H and
it is a subgroup of G.

Lemma 4.8. Let (T (G), ∗) be a connected Takasaki quandle and H ⊂ G a
subgroup. Let NH = {φg | g ∈ H}. Then NH is a proper normal subgroup of
InnQ(T (G)). Moreover, 0NH = H.

Proof. First, we will show that NH is a subgroup of InnQ(T (G)). Let φg, φh ∈ NH .
Note that φ−1

h = φ−h. Then φg ◦ φ−1
h (x) = φg ◦ φ−h(x) = x + (g − h) = φg−h(x).

Since H is a subgroup of G, g − h ∈ H . Hence φg−h ∈ NH . Therefore, NH is a
subgroup of InnQ(T (G)).

Now we will show that σ−1 ◦ φg ◦ σ ∈ NH for every σ ∈ InnQ(T (G)). By
Lemma 4.6, σ is either ψ2a or φ2a for some a ∈ T (G). If σ = φ2a for a ∈ G, then

φ−1
2a ◦ φg ◦ φ2a(x) = φ−1

2a ◦ φg(x+ 2a)

= φ−1
2a (x + g + 2a)

= x+ g + 2a− 2a

= x+ g

= φg(x).

If σ = ψ2a for a ∈ G, then

ψ−1
2a ◦ φg ◦ ψ2a(x) = ψ−1

2a ◦ φg(−x+ 2a)

= ψ−1
a (−x+ g + 2a)

= −(−x+ g + 2a) + 2a

= x− g

= φ−g(x).

Therefore for any σ ∈ Inn(Q), σ−1 ◦ φg ◦ σ ∈ NH . Hence NH is a normal subgroup
of InnQ(T (G)).

By Corollary 4.7 and Lemma 4.8, for a subgroup H ⊂ G, there exists a proper
normal subgroup NH such that 0NH = 2H . Conversely, for a proper normal sub-
group N of InnQ(T (G)), there exists a subgroup H of G such that NH = N .

Theorem 4.9. Let (T (G), ∗) be a connected Takasaki quandle. Let H be a subgroup
of G. Then T (G)/H = T (G)/NH as a quandle.

Proof. Let (T (G), ∗) be a connected Takasaki quandle. Let H be a subgroup of G
and NH = {φh |h ∈ H}. By Lemma 4.8, NH is a normal subgroup of InnQ(T (G)).

First we will show that T (G)/H = T (G)/NH as a set, i.e. {H ∗ g}g∈G =
{kNH}k∈G. ForH∗g ∈ {H∗g}g∈G,H∗g = 2g−H = 2g+H = 2gNH ∈ {kNH}k∈G.
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For kNH ∈ {kNH}k∈G, kNH = {k + h |h ∈ H} = k + H . Since (T (G), ∗) is con-
nected, G = 2G. There exists g ∈ G such that k = 2g. Therefore kNH = k +H =
2g +H = H ∗ g ∈ {H ∗ g}g∈G.

Now we will show that they have exactly the same quandle operation. Let H ∗g1
and H ∗ g2 be elements of T (G)/H and let k1NH and k2NH elements of T (G)/NH .
Assume that H ∗ g1 = k1NH and H ∗ g2 = k2NH . We can get 2g1 + H = k1 + H

and 2g2 +H = k2 +H .Then

k1NH ∗ k2NH = (k1 ∗ k2)NH

= k1 ∗ k2 +H

= 2(g1 ∗ g2) +H

= H ∗ (g1 ∗ g2)
= (H ∗ g1) ∗′ (H ∗ g2).

Hence T (G)/H = T (G)/NH as a quandle.

Corollary 4.10. Let (T (G), ∗) be a connected Takasaki quandle. Let X be a sub-
quandle of T (G). Assume that X = H + a for some subgroup H of G. Then
T (G)/X ∼= T (G)/NH as a quandle.

Proof. Since (T (G), ∗) is a connected Takasaki quandle, by Corollary 3.8,
T (G)/X ∼= T (G/H) ∼= T (G)/H . By the above theorem, T (G)/X ∼= T (G)/H ∼=
T (G)/NH .

Remark 4.11. BLRY quotient quandle can be defined for all quandles, but it is
difficult to figure out the inner quandle automorphism group of quandles and its
normal subgroups. Our quotient structure is defined by the familiar method that is
used to define the quotient structure for other algebraic structures, e.g. a quotient
group, a quotient ring and a quotient module, so that it is easy to understand
and to calculate the quotient quandle. We defined our quotient structure for only
Takasaki quandles, and are trying to apply this construction for other quandles.
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